
0.1 Dimensional Regularisation

In the intermediate stages of the calculation we must introduce some regular-
isation procedure to control these divergences. The most effective regulator
is the method of dimensional regularisation which continues the dimension of
space-time to d = 4− 2ε dimensions[??]. This method of regularisation has the
advantage that the Ward Identities of the theory are preserved at all stages of
the calculation. Integrals over loop momenta are performed in d dimensions
with the help of the following formula,∫

ddk

(2π)d

(−k2)r[
− k2 + C − iε

]m =

i(4π)ε

16π2
[C − iε]2+r−m−ε Γ(r + d/2)

Γ(d/2)
Γ(m− r − 2 + ε)

Γ(m)
. (1)

To demonstrate Eq. (1), we first perform a Wick rotation of the k0 contour
anti-clockwise. This is dictated by the iε prescription, since for real C the poles
coming from the denominator of Eq. (1) lie in the second and fourth quadrant
of the k0 complex plane as shown in Fig. ??. Thus by anti-clockwise rotation we
encounter no poles. After rotation by an angle π/2, the k0 integral runs along
the imaginary axis in the k0 plane, (−i∞ < k0 < i∞). In order to deal only
with real quantities we make the substitution k0 = iκd, kj = κj for all j 6= 0
and introduce |κ| =

√
κ2

1 + κ2
2 . . . + κ2

d. We obtain a d-dimensional Euclidean
integral which may be written as,∫

ddκ f(κ2) =
∫

d|κ| f(κ2) |κ|d−1 sind−2 θd−1 sind−3 θd−2 . . .

× sin θ2 dθd−1dθd−2 . . . dθ2dθ1. (2)

This formula is best proved by induction. The range of the angular integrals is
0 ≤ θi ≤ π except for 0 ≤ θ1 ≤ 2π. The angular integrations, which only give
an overall factor, can be performed using∫ π

0

dθ sind θ =
√

π
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)
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2

) . (3)

We therefore find that the left hand side of Eq. (1) can be written as,

2i

(4π)d/2Γ
(
d/2

) ∫ ∞

0

d|κ| |κ|
d+2r−1[

κ2 + C
]m . (4)

This last integral can be reduced to a Beta function, (see Table 2)∫ ∞

0

dx
xs[
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) Cs/2+1/2−m (5)
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γµγν + γνγµ = 2 gµνI
γµγµ = gµ

µ I = d I
γµγαγµ = −2 (1− ε) γα

γµγαγβγµ = 4 gαβI− 2ε γαγβ

γµγαγβγργµ = −2 γργβγα + 2ε γαγβγρ

Tr I = 4
Tr γµγν = 4 gµν

Tr γµγνγργσ = 4
(
gµνgρσ + gνρgµσ − gµρgνσ

)
Table 1: Gamma matrix identities in d = 4− 2ε dimensions.

which demonstrates Eq. (1).
Feynman parameter identities are also useful; we have

1
Aα Bβ · · ·Eε

=
Γ(α + β + · · · ε)
Γ(α)Γ(β) · · ·Γ(ε)

×
∫ 1

0

dx dy · · · dz δ(1− x− y · · · − z)

× xα−1 yβ−1 · · · zε−1

(Ax + By + · · ·+ Ez)α+β+···+ε
(6)

When calculating the two, three and four point functions of the quark, gluon
and ghost fields the ultraviolet divergences of the theory appear as poles in ε.
In the mimimal subtraction (MS) renormalisation scheme[??] one chooses the
various Z’s of the theory in such a way that the poles are all cancelled. In one
loop this leads to the renormalisation constants given in Table 3.

Note that the renormalisation constants depend on the gauge parameter.
The scheme is called minimal because the renormalisation constants of the the-
ory contain only the pole parts.
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Γ(z) =
∫∞
0

dt e−ttz−1

zΓ(z) = Γ(z + 1)

Γ(2z) = 22z−1
√

π
Γ(z)Γ(z + 1

2 )

Γ(n + 1) = n! for n a positive integer

Γ(1) = 1, Γ( 1
2 ) =

√
π

Γ ′(1) = −γE , γE ≈ 0.577215

Γ ′′(1) = γ2
E + π2

6

B(a, b) =
∫ 1

0
dx xa(1− x)b

B(a, b) =
∫∞
0

dt ta−1

(1+t)a+b for Re a, b > 0

B(a, b) = Γ(a)Γ(b)
Γ(a+b)

Table 2: Useful properties of the Γ and related functions

3



Z3 1 +
g2

16π2

1
ε

[
Nc

(13
6
− λ

2
)
− 4

3
nfTR

]
Z1 1 +

g2

16π2

1
ε

[
Nc

(17
12
− 3λ

4
)
− 4

3
nfTR

]
Z4 1 +

g2

16π2

1
ε

[
Nc

(2
3
− λ

)
− 4

3
nfTR

]
Z̃3 1 +

g2

16π2

1
ε

[
Nc

(3
4
− λ

4
)]

Z̃1 1− g2

16π2

1
ε

[
Nc

λ

2

]
ZF

2 1− g2

16π2

1
ε

[
CF λ

]
ZF

1 1− g2

16π2

1
ε

[
Nc

(3
4

+
λ

4
)

+ CF λ
]

Zm 1− g2

16π2

1
ε

[
CF 3

]
Zg 1− g2

16π2

1
ε

[
Nc

11
6
− nfTR

2
3

]

Table 3: Minimal subtraction renormalisation constants in a general covariant
gauge at one loop order.
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